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Abstract

A design for hardware protection between groups of objects is proposed. Objects

are grouped into partitioned protection rings. The design provides a transparent C++

interface across protection boundaries. The mechanism used to cross protection bound-

aries is called the Proxy mechanism. Proxy objects are similar to object capabilities.

A Proxy object provides the capability for one partition of one ring to call member

functions on an object in any partition of any ring. A co-compiler reads class interface

de�nitions and generates individualized code to help provide the transparent interface.

Subclassing across protection boundaries is supported. Classes may be added or re-

placed without rebooting or recompiling the system. The design will be implemented

on the Choices operating system which is written in C++.

1 Introduction

An operating system must protect parts of a computer system from other parts. For

example, the kernel should be protected from application code, and applications should

be protected from each other. Without hardware protection it is impossible to isolate

code that has been tested and shown to be reliable from new code that has inadvertent

bugs in it, or code that may have even been written by a programmer with intentions

to compromise system security.

The C++model of computation e�ciently implements object-oriented programming

concepts [RMC90, Jor90]. However, the language does not support hardware protection

between objects. The C++ compiler supports compile-time protection between objects,

but since all objects are in a single address space with no hardware protection between

them, and since the language includes unrestricted pointer manipulation operations,

code can easily override the compile-time protection.
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1.1 The Problem

The problem that I am trying to solve is this: a generalized hardware-enforced pro-

tection mechanism is needed for object-oriented operating systems that includes an

interface to an e�cient object-oriented language. An e�cient object-oriented operat-

ing system implementation requires the use of a programming language that e�ciently

implements object-oriented programming concepts and yet is 
exible enough to be

used for systems programming. Compiler protection between objects is more e�cient

than hardware protection between objects but it is not su�cient to protect against

the unrestricted pointer operations that are useful in systems programming. Hardware

protection boundaries should be set up between groups of objects so objects can be

completely protected where necessary and protected by only the compiler when hard-

ware protection is not necessary. A transparent language interface across protection

boundaries is needed so a single uni�ed programming model can be used in an entire

system. Problems related to providing the transparent interface for an object-oriented

language include creating objects across boundaries, passing references to objects across

boundaries, and subclassing across boundaries.

There are several reasons why this problem needs a solution:

1. An operating system environment requires hardware-enforced protection between

di�erent parts of the system. Programs written by malicious programmers or

newly-loaded, untested programs should not be able to corrupt data that the

programs do not need complete access to or be able to crash the whole system.

Also, an operating system should not rely on a compiler to provide protection

since a variety of languages and compilers are available to malicious programmers.

2. A transparent language interface across protection boundaries allows easy move-

ment of portions of code into and out of the kernel; it allows the size of the kernel

to be minimized without sacri�cing the C++ object-oriented computation model.

A smaller kernel has the potential of moving more of the operating system to

further-out protection rings, reducing the amount of code that can a�ect the op-

eration of the entire system. A smaller kernel also allows more of the system to be

replaced without taking the system down; this is especially important in systems

that require high uptime and is very useful in a research environment.

3. Access between objects that do not need to be protected from each other should

not have to pay the cost of hardware protection. The C++model of computation is

e�cient and 
exible and is a good model to use when protection is not necessary.

1.2 My Solution

This paper proposes a design for hardware-enforced protection between groups of C++

objects. My design includes multiple MULTICS-style \rings of protection" [Org80]

where objects in inner rings can access other objects in their own ring and further-out

rings. Each ring can be partitioned into multiple address spaces. Accessing objects

within a single partition of a ring continues to have the same e�ciency that C++

normally has. The same C++ code can call member functions on objects in di�erent

rings and on objects in the same ring, but a minimal overhead is incurred to switch
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rings. The mechanism that switches protection rings is called the Proxy mechanism.

Proxy objects are like capabilities [Lev84] that give the right to call member functions

on objects in di�erent rings or partitions.

Furthermore, my design provides for dynamic loading of new classes in any parti-

tion of any ring without rebooting or recompiling the system. New implementations of

classes can also replace existing classes. This kind of dynamic loadability with protec-

tion is particularly useful for embedded operating systems in high-uptime applications

that need to remain operating during upgrades.

My design will be implemented on the Choices [CJR87, CJMR89] operating system,

an operating system framework developed at the University of Illinois that is written in

C++. The Choices kernel is not only written in C++, but it also is designed in an object-

oriented manner. Providing a C++ interface to kernel objects outside of the kernel �ts

more naturally into the Choices system than the simple function call (supervisor call)

interfaces used in traditional operating systems.

1.3 Comparison to Related Work

Portions of my design are similar to work done elsewhere; the similarities and di�erences

will be explored in this section.

My design uses a combination of a rings of protection model and capabilitites. That

combination �ts well with providing a transparent C++ interface.

Other systems use a rings of protection model, most notably MULTICS [Org80].

VAX/VMS uses four protection levels with some shared address space [KB84]. The

ability to 
exibly partition the rings is novel to this work.

Much has been written about capabilities and object capabilities, for example

[Lev84] and [BS88]. My design uses a subset of the capabilities model: a Proxy only

grants the right to invoke member functions on an object, not other rights such as the

ability to read or write an object.

Work has been done in hardware protection of objects in other systems. Several

systems use a separate address/protection space for every object, including Clouds

[DLA88, PD88], Alpha [ABS89, Nor87], and Eden [ABLN85]. By contrast, my design

has a separate protection space for a group of objects, thus avoiding the extra space

required to maintain every object and the extra time required to communicate between

two objects that trust each other (that is, objects in the same group). A separate

address space makes it possible to do �ne-grained object migration in a distributed

system, but there is no reason why the group of objects in this system could not be

migrated together.

Eden uses active objects, where each object has a process associated with it as

well as an address space. Communication is done via message passing. My design, like

Clouds and Alpha, uses passive objects that are manipulated through member function

calls by independent processes.

The Emerald system uses compiler-enforced protection [JLHB88]. The Emerald

language does not provide unrestricted pointer operations like C++.

Clouds, Alpha, Eden, and Emerald are all object-based, not object-oriented. In

other words, they do not incorporate inheritance and class hierarchies. My design is
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for an object-oriented system.

Cross-calls share some design issues with the systems that have an address space

per object because cross-calls also need to entirely switch address spaces on mem-

ber function invocation; these issues include stack-switching and parameter copying.

Cross-calls also resemble remote procedure calls (RPC), which also cross address space

boundaries as they cross machine boundaries. Examples of systems that support RPC

are described in [BN84] and [D

+

88].

Many other modern operating systems incorporate the minimal kernel concept. Ex-

amples include Mach [R

+

89], V [CZ83], and a kernel for Clouds called Ra [BA

+

89]. The

Ra kernel is written in C++ but it does not provide a C++-like interface to applications.

A system that allows adding code to a running C++ program is described in [DSS90].

That system has several similarities to this one, including the use of �rst-class classes

to keep track of C++ class hierarchies. However, that system does not provide any

protection between already running parts and newly loaded parts. It also does not

allow for replacing classes with new implementations, only for adding new classes.

1.4 Paper Organization

This paper is organized as follows: Section 2 describes the model of protection. Section

3 discusses how the rings of protection can be implemented on common hardware, and

Section 4 describes the Proxy mechanism. Section 5 discusses other topics related to

providing a transparent interface. The paper concludes with a look at the state of the

implementation of the design.

2 Protection Model

The protection model for this design is a hybrid of protection rings and object capabil-

ities. [Org80] presents a complete description of the protection ring model and [Lev84]

presents a description of the object capability model. [BS88] compares the models to

each other.

Many operating systems provide protection between di�erent parts of the system

by giving each part its own address space. However, pointers to arbitrary data cannot

be passed between separate address spaces; all parameters along with the data they

reference must be copied to the new address space, and data that is returned must be

copied back. To avoid that copying, and to make the interface closely resemble a normal

C++ interface where pointers to arbitrary data are commonly passed as parameters, a

ring model with shared address spaces is incorporated into the protection model for

this design. Each ring can be further partitioned into separate address spaces for cases

where sharing address space is not required.

An object capability can be viewed as a pointer to an object that also includes

the set of operations on the object that the owner of the capability has the right to

invoke. Example operations are the ability to read the object directly, to write the

object directly, or to execute member functions de�ned for the objects to indirectly

access the object.
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